<u>KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)</u> <u>Department Of Mathematics</u>

Programme	Semester:	r	Fitle of The	e Course	Course Code:		W.E.F
B.VOC(IT)& B.VOC(WT)	Ι	Discrete Mathematics - I			R20ITDM101 & R20WSDM101		2020-21
Total No of Hours for Teaching – Learning		Instructional Hours for Week		Duration of Semester End Examination in Hours	Max M	larks	Credits
60 Hours		Theory 4		2 11.01100	CIA	SEE	
				3 Hours	25	75	4

COURSE OBJECTIVES

The aim of this course is to provide necessary information to solve problems on Algebra and their applications.

COURSE OUTCOME

- Understand the concept of Algebra .
- Finding Solutions in Special products, exponents, Fundamental operations...
- Applications in classical mechanics.

<u>UNIT – I</u> : <u>Algebra</u>

- 1. Fundamental Operations with number addition, subtraction, multiplication and division of numbers exponential and powers laws of exponents operations with fractional.
- Fundamental operations with algebraic expressions differential types of polynomials, degree of a polynomials – addition, multiplication division of algebraic expressions.

UNIT-II

- 1. Special products like a^n-b^n , a^n+b^n etc.
- 2. Factorising-common monomial factor, difference of two sequences, perfect square binomials, sum of difference of two cubes grouping of terms factors of $a^n + b^n$ addition and subtraction of suitable terms HCF & LCM of algebraic expressions.

<u>UNIT – III</u>

- Fractions the algebraic sum of fractions product of fractions quotient of two fractions & complex fractions.
- Exponents positive fractional exponent negative integral exponent Rational exponents – general laws of exponents.

<u>UNIT - IV</u>

 Radicals – Radical form – laws for radicals similar radicals – addition, multiplication & division of radical & conjugates.

UNIT-V

Simple operation with complex numbers – imaginary number – squareroot of √-1 complex numbers – algebraic addition, subtraction, multiplication & division of simple complex numbers. Note : Problems only on all the above concepts

PRESCRIBED BOOKS

- Munay R. Spiegel, Robert E. Maver Schaum's outlines series College algebra 1956 Edition
- Chapters 1,2,4,5,6,7,8,9 content & treatments as it is

Reference Books :

- Bhavanari Satyanarayana & Kuncham Syam Prasad
- Discrete Mathematics & Graph theory, Printice Hall of India, Learning, New Delhi 2009.

Paper Setting:

- Section A One Question from each chapter of Unit IV & Unit V
 - Two Questions from Unit I, Unit II & Unit III.
- Section B Two Questions from each Unit.

<u>KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)</u> <u>Department Of Mathematics</u>

Programme	Semester:]	Fitle of The	e Course	Course Code:		W.E.F
B.VOC(IT)& B.VOC(WT)	Ι	Discrete Mathematics - I			R20ITDM101 & R20WSDM101		2020-21
Total No of Hours for Teaching – Learning			ctional for Week	Duration of Semester End Examination in Hours	Max M	larks	Credits
60 Hours		Theory		3 Hours	CIA	SEE	
		4			25	75	4

Model Question Paper

SECTION-A (Short Answer Questions)

(Instructions to the paper setter: Set minimum ONE question from each unit, max Eight from all.)

Answer any *five* of the following questions

1. Evaluate the expression given (i) x=2, y=3, $a=\frac{1}{2}$, $b=\frac{-2}{3}$, $(\frac{x}{y})^2 - 3(\frac{b}{a})^3$.

(ii) x=2, y=-1, z=3, a=0, b=4,
$$c=1/3 \frac{4x^2y(z-1)}{a+b-3c}$$
.

- 2. Find $(e^{y} + 1)(e^{y} 1)(e^{2y} + 1)(e^{4y} + 1)(e^{8y} + 1)$.
- 3. Divide $x^2+2x^4-3x^3+x-2$ by x^2-3x+2 .
- 4. Add the algebraic expressions $2a^{2}bc-2acb^{2}+5c^{2}ab$, $4b^{2}ac+4bca^{2}-7ac^{2}b$,

 $4abc^2-3a^2bc-3ab^2c$, $b^2ac-abc^2-3a^2bc$.

- 5. (i) Find the L.C.M. of $9x^4y^2$ and $12x^3y^3$.
 - (ii) Find the G.C.F. of $48r^3t^4$ and $54r^2t^6$.
- 6. Find the complex fraction of $1 \frac{1}{2 \frac{1}{2 \frac{1}{2a + 1}}}$.
- 7. (i) Find the value of (0.004) $(30000)^2$.
 - (ii) Evaluate $4x^{-2/3} + 3x^{1/3} + 2x^0$ when x = 8.
- 8. Perform the indicated operations both algebraically and graphically (2+6i) + (5+3i).

5x5=25

SECTION-B (Essay Questions)

(Instructions to the paper setter: Set minimum two questions from each unit, either or internal choice)

Answer <u>All</u> of the following questions

5x10=50

9. a) Add the algebraic expressions

- (i) $x^2+y^2-z^2+2xy-2yz$, $y^2+z^2-x^2+2yz-2zx$, $z^2+x^2-y^2+2zx-2xy$.
- (ii) Perform the division of $2x^{6}+5x^{4}-x^{3}+1$ by $-x^{2}+x+1$.

Or

- b) Find the product of (3y+x) $(81y^4-27y^3x+9y^2x3yx^3+x^4)$
- 10. a) (i) Find the factor of $(x^2-4z^2+9y^2-6xy)$
 - (ii) Find the L.C.M. of $2^3 \cdot 3^2(x-y)^3 (x+2y)^2$, $2^2 \cdot 3^3(x-y)^2 (x+2y)^3$,

 $3^{2} (x-y)^{2} (x+2y)$

Or

b) Find the perfect square of $4m^6n^6+32m^4n^4+64m^2n^2$.

11. a) Find the addition and subtraction of $\frac{3x-6}{4x^2+12x+16}\frac{2x-5}{6x^2-6} + \frac{3x^2+3}{8x^2+40x+32}$

Or

- b) (i) Find the value of $4x^{-2/3} + 3x^{1/3} + 2x^0$ when x = 8.
 - (ii) Find the value of $(0.125)^{1/3} \cdot 0.25^{-1/2}$.

12. a) (i) Find the multiplication of $(\sqrt{x+y}-z)(\sqrt{x+y}+z)$

(ii) Find $\frac{1}{5}(-10 + \sqrt{-125})$

Or

b) Show that
$$\frac{x+\sqrt{y}}{x-\sqrt{y}} + \frac{x-\sqrt{y}}{x+\sqrt{y}} = \frac{2x^2+2y}{x^2-y}$$

13. a) Find
$$\frac{2\sqrt{3}+2i}{3\sqrt{2}-4\sqrt{3}i}$$
 Or

b) Find
$$\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$$

* * *

KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous) **Department Of Mathematics**

Programme	Semester:	Title of The Course			Course Code:		W.E.F
B.VOC(IT)&					R20ITDM101		
B.VOC(WT)	Ι	Discrete Mathematics – I			&		2020-21
					R20WSDM101		
			Duration of	Max Marks			
Total No of Hours for		Instructional				Semester End	Credits
Teaching – Learning		Hours for Week				Examination in	Cicuits
				Hours			
60 Hours		Theory		3 Hours	CIA	SEE	
		4			25	75	4

QUESTION BANK

SHORT ANSWER QUESTIONS :

SECTION-A

- 1. Evaluate the expression given
- (i) x=2, y=3, a=1/2, b= -2/3, $(x/y)^2 3(b/a)^3$.
- (ii) x=2, y=-1, z=3, a=0, b=4, $c=1/3 \frac{4x^2y(z-1)}{a+b-3c}$.
- 2. Find $(e^{y} + 1)(e^{y} 1)(e^{2y} + 1)(e^{4y} + 1)(e^{8y} + 1)$.
- 3. Add the algebraic expression $x^2+y^2-z^2+2xy-2yz$, $y^2+z^2-x^2+2yz-2zx$,
 - $z^{2}+x^{2}-v^{2}+2zx-2xv$
- Add 7x+3y³-4xy, 3x-2y³+7xy, 2xy-5x-6y³+7xy³.
 Add the algebraic expression 2a²bc-2acb²+5c²ab, 4b²ac+4bca²-7ac²b, $4abc^2-3a^2bc-3ab^2c$, $b^2ac-abc^2-3a^2bc$

SECTION-B

6. (i) Find the L.C.M. of $9x^4y^2$ and $12x^3y^3$.

(ii) Find the G.C.F. of $48r^3t^4$ and $54r^2t^6$.

7.Find the value of $(u-v)^{3}(u+v)^{3}$ 8.Simplify $(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$ 9.Simplify $(2t^{2}+s)(3t^{2}+4s)$ 10.Find the value of $(ab^{2}+2b)^{3}$ 11.Find the factors of $6x^{2}-7x-5$ 12.Find the factors of $3x^{2}+10x+3$ **SECTION-C**

13. Find the complex fraction of $1 - \frac{1}{2 - \frac{1}{\left[3 - \frac{2a-1}{2a+1}\right]}}$.

14. (i) Find the value of (0.004) $(30000)^2$.

- (ii) Evaluate $4x^{-2/3} + 3x^{1/3} + 2x^0$ when x = 8.
- 15.Simplify $\frac{x^2-3x+2}{2-x}$

16. Show that
$$\frac{\frac{x+1}{x-1} - \frac{x-1}{x+1}}{\frac{1}{x-1} + \frac{1}{x+1}} = 2$$

17. Evaluate
$$\frac{-3^2(-2x)^{-3}}{(x+1)^{-2}}$$
 when x=2.

18. Evaluate (0.004)(30.000)².

SECTION-D

19. Find the value of $\frac{5}{2\sqrt{3}+\sqrt{2}}$. 20. Rationalise the denominator of $\frac{3}{3\sqrt{5}-2}$ 21. Simplify $\frac{3}{\sqrt{5}+\sqrt{2}}$ 22. Simplify $(3\sqrt{2} - 4\sqrt{5})(2\sqrt{3} + 3\sqrt{6})$ 23.Find the value of $(\sqrt{x+y}-z)(\sqrt{x+y}+z)$ 24. Find $\sqrt[12]{8x^3y^6}$.

SECTION-E

25. Perform the indicated operations both algebraically and graphically (2+6i) + (5+3i).

26. Find (5+3i)(2-2i)

27. Find $\frac{1+i}{3-i}$

28. Find $\frac{-1}{2-2i}$

29.Find $\frac{3-\sqrt{2i}}{\sqrt{2i}}$

30.Find the value of $\left(\frac{2}{3} - \frac{1}{2}i\right) - \left(\frac{-1}{3} + \frac{1}{2}i\right)$

LONG ANSWER QUESTIONS :

SECTION-A

- 1. Add the algebraic expressions
 - (i) $x^2+y^2-z^2+2xy-2yz$, $y^2+z^2-x^2+2yz-2zx$, $z^2+x^2-y^2+2zx-2xy$.
 - (ii) Perform the division of $2x^{6}+5x^{4}-x^{3}+1$ by $-x^{2}+x+1$.
- 2. Find the product of (3y+x) $(81y^4-27y^3x+9y^2x3yx^3+x^4)$
- 3.Divide $x^2+2x^4-3x^3+x-2$ by x^2-3x+2

4.Solve $\frac{16y^4 - 1}{2y - 1}$

SECTION-B

- 5. (i) Find the factor of $(x^2-4z^2+9y^2-6xy)$
 - (ii) Find the L.C.M. of 2³.3²(x-y)³ (x+2y)², 2².3³(x-y)² (x+2y)³,
 3² (x-y)²(x+2y)
- 6. Find the perfect square of $4m^6n^6+32m^4n^4+64m^2n^2$
- 7. Find the GCF and LCM of y^4 -16, y^2 -4, y^2 -3y+2.
- 8.Find (3y+x)(81y4-27y3x+9y2x2-3yx3+x4

SECTION-C

9. Find the addition and subtraction of $\frac{3x-6}{4x^2+12x+16}\frac{2x-5}{6x^2-6} + \frac{3x^2+3}{8x^2+40x+32}$ 10. (i) Find the value of $4x^{-2/3} + 3x^{1/3} + 2x^0$ when x = 8. (ii) Find the value of $(0.125)^{1/3} \cdot 0.25^{-1/2}$.

11.Evaluate $3\sqrt{\frac{(0.004)^4(0.0036)}{(120000)^2}}$ 12.Find that of $\frac{(80,000,000)^2(0,000003)}{(6,00,000)(0.002)^4}$

SECTION-D

13. (i) Find the multiplication of $(\sqrt{x+y} - z)(\sqrt{x+y} + z)$

(ii) Find
$$\frac{1}{5} \left(-10 + \sqrt{-125} \right)$$

14. Show that $\frac{x + \sqrt{y}}{x - \sqrt{y}} + \frac{x - \sqrt{y}}{x + \sqrt{y}} = \frac{2x^2 + 2y}{x^2 - y}$
15. Simplify $\frac{x + \sqrt{x}}{1 + \sqrt{x} + x}$
16. Find $\frac{2 + \sqrt{3} + \sqrt{5}}{2 + \sqrt{3} - \sqrt{5}}$

SECTION-E

17. Find $\frac{2\sqrt{3}+2i}{3\sqrt{2}-4\sqrt{3}i}$ 18. Find $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\right)$ 19.Simplify $\frac{5}{3-4i}+\frac{10}{4+3i}$ 20. Simplify $\frac{3\sqrt{2}+2\sqrt{3}i}{3\sqrt{2}-2\sqrt{3}i}$

<u>KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)</u> <u>Department Of Mathematics</u>

Programme	Semester:		Title of Th	ne Course	Course Code:		W.E.F
B.VOC(WT)& B.VOC. (IT)	II	Discrete Mathematics – II			R20WSDM201 R20ITDM201		2019-20
Total No of Hours for Teaching – Learning		Instructional Semester End		Duration of Semester End Examination in Hours	Max M	larks	Credits
60 Hours		Theory		3 Hours	CIA	SEE	
		4			25	75	4

COURSE OBJECTIVES

The aim of this course is to provide necessary information to solve problems on Algebra and their applications.

COURSE OUTCOME

- Understand the concept of Algebra .
- Finding Solutions in Special products, exponents, Fundamental operations ..
- Applications in classical mechanics.

UNIT - I

Functions and graphs

Functions of two variables-rectangular co-ordinate system-graph of two variablesgraphing the functions y=f(x)

Simultaneous linear equations-linear equation of two unknowns-system of two linear equations in two unknowns-solutions by addition, subtraction, solution by substitution-system of three linear equation in three unknowns

Mathematical induction -principles of mathematical induction

UNIT - II.

Sets-definition of a set -sub set -set operations-Venn diagrams-algebra of sets -duality of sets -finite sets - power sets

Functions –function-real valid functions- composition of function – one-one, onto ,invertible -function recurresively defined function

UNIT – III:

Vectors and Matrices:

Introduction-vectors-matrices-matrix addition &scalar multiplications-matrix multiplications-transpose-square matrices-invertible (non singular)matrices-inverses-determinants-elementary row operations –Gaussian elimination

UNIT - IV

Lattice –bounded lattices-distribute lattices-complements, complemented lattice

UNIT –V

Boolean algebra:

Introduction –basic definition-duality- duality principles-sum of products form of sets –sum –of-products form for boolean table ,Boolean functions logic gates-circuits-truth tables-Boolean functions

NOTE : Problems only on all the above concepts

PRESCRIBED BOOKS:

1.Murray R-spiegal,Robert E.maver ,Schaum's outline series –college algebra1956 edition
Unit-I: chap:10,12,13,15,31 of above text book
2.SEYMOUR LIPSCHUTZ: marc lipson Schaum's outline series-discrete mathematics – second edition
Unit-II: chap-1,2,3,4;
Unit-III: chap-14,15 content &treatments as it is

<u>Reference Books</u> :

Bhavanari Satyanarayana &kuncham syam Prasad Discrete mathematics &graph theory, printice hall of India ,learning ,New Delhi 2009.

<u>Blue print :</u>

Section A – One Question from each chapter of Unit – IV & Unit - V

- Two Questions from Unit I, Unit II & Unit III.

Section B - Two Questions from each Unit.

<u>KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)</u> <u>Department of Mathematics</u>

Programme	Semester:	Title of The Course			Course Code:		W.E.F
B.VOC(WT)&	П	Discrete Mathematics – II			R20WSDM201		2019-20
B.VOC. (IT)	11	DIS	ciele Mai	iematics – n	R20ITDM201		
		Instructional Hours for Week		Duration of	Max Marks		
Total No of Hours for				Semester End			Credits
Teaching – Learning				Examination in			Credits
				Hours			
60 Hours		Theory	Practical	3 Hours	CIA	SEE	
		4	2		25	75	

MODEL QUESTION PAPER

SECTION -A

Answer any FIVE questions:

5x5=25M

1.If $y=5+3x-2x^2$ find the values of y corresponding to x=-3,-2,-1,0,1,2,3.

2. solve the equations 3x+y-z=4, x+y+4z=3, 9x+5y+10z=8.

3.Find the powerset P(A) of $A = \{1, 2, 3, 4\}$.

4.If f:A \rightarrow R, g:R \rightarrow R defined by f(x)==x²+x-2,g(x)=2x-3 then find g of where A={1,2,3,4,5}.

5.Find the ADJ of $\begin{bmatrix} 4 & 5 & 6 \\ 5 & 0 & 3 \\ 2 & 4 & 7 \end{bmatrix}$.

6.Define the Lattice .

7.Find the truth table for \sim (p[^] \sim q).

8.If u=(2,-3,1), v=(1,4,-2) be two vectors then compute (U+V)x(U-V).

SECTION -B

ANSWER ALL THE QUESTIONS

5X10=50M

9. A)Prove by mathematical induction that for all integers 'n'.

$$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2n+1)}{6}$$
(OR)

B). Prove by mathematical induction that for all integers 'n'.

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

10. A) If f:A \rightarrow B , g:B \rightarrow C are two bijections then prove that gof:A \rightarrow C is also a bijection.

B) Find the formula for the inverse of $h(x) = \frac{2x-3}{5x-7}$

11.A).Find the inverse of $\begin{bmatrix} 1 & -2 & 2 \\ 3 & -3 & 6 \\ 1 & 1 & 7 \end{bmatrix}$ by using row operations. (OR) $1 \quad a^2 \quad a^3 \qquad a \quad a^2 \quad bc$

12.A). Let 'L' be a bounded distributive lattice. Then the compliments are unique if there exists .

(OR)

B). If 'L' be a lattice then $a^b=a \Leftrightarrow aVb=b$.

13. A).i) Define Boolean algebra.

ii) Describe the three basic logic gates.

(OR)

B).Show that $(p \rightarrow q)^{(q \rightarrow r)} \rightarrow (p \rightarrow r)$ is tautology.

-----*_----