KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)

Department Of Mathematics

Programme	Semester:	Title of The Course			Cours	ode:	W.E.F
 B.VOC(WT)	I	Discrete Mathematics - I			$\begin{array}{r} \hline \text { R20IT } \\ \text { R20W } \\ \hline \end{array}$	$\begin{aligned} & \hline 1101 \\ & \text { M101 } \\ & \hline \end{aligned}$	2020-21
Total No of Hours for Teaching - Learning		Instructional Hours for Week		Duration of Semester End Examination in Hours	Max Marks		Credits
60 Hours		Theory		3 Hours	CIA	SEE	
		4			25	75	4

COURSE OBJECTIVES

The aim of this course is to provide necessary information to solve problems on Algebra and their applications.

COURSE OUTCOME

- Understand the concept of Algebra .
- Finding Solutions in Special products , exponents, Fundamental operations ..
- Applications in classical mechanics.

UNIT - I : Algebra

1. Fundamental Operations with number addition, subtraction, multiplication and division of numbers - exponential and powers - laws of exponents - operations with fractional.
2. Fundamental operations with algebraic expressions - differential types of polynomials, degree of a polynomials - addition, multiplication division of algebraic expressions.

UNIT-II

1. Special products like $\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}, \mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}$ etc.
2. Factorising-common monomial factor, difference of two sequences, perfect square binomials, sum of difference of two cubes - grouping of terms - factors of $\mathrm{a}^{\mathrm{n}}+$ b^{n} addition and subtraction of suitable terms - HCF \& LCM of algebraic expressions.

UNIT - III

1. Fractions - the algebraic sum of fractions product of fractions - quotient of two fractions \& complex fractions.
2. Exponents - positive fractional exponent negative integral exponent Rational exponents - general laws of exponents.

UNIT - IV

1. Radicals - Radical form - laws for radicals similar radicals - addition, multiplication \& division of radical \& conjugates.

UNIT-V

1. Simple operation with complex numbers - imaginary number - squareroot of $\sqrt{ }-1$ complex numbers - algebraic addition, subtraction, multiplication \& division of simple complex numbers. Note : Problems only on all the above concepts

PRESCRIBED BOOKS

- Munay R. Spiegel, Robert E. Maver Schaum's outlines series College algebra - 1956 Edition
- Chapters - $1,2,4,5,6,7,8,9$ content \& treatments as it is

Reference Books :

- Bhavanari Satyanarayana \& Kuncham Syam Prasad
- Discrete Mathematics \& Graph theory, Printice Hall of India, Learning, New Delhi 2009.

Paper Setting:

- Section A - One Question from each chapter of Unit - IV \& Unit - V
- Two Questions from Unit I, Unit II \& Unit III .
- Section B - Two Questions from each Unit.

KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)
Department Of Mathematics

Programme	Semester:	Title of The Course		Course Code:	W.E.F								
 B.VOC(WT)	I	Discrete Mathematics - I			R20ITDM101 R20WSDM101	2020-21							
Total No of Hours for Teaching - Learning	Instructional Hours for Week		Duration of Semester End Examination in Hours	Max Marks	Credits								
60 Hours								Theory		3 Hours	CIA	SEE	
	4			25	75	4							

Model Question Paper

SECTION-A (Short Answer Questions)

(Instructions to the paper setter: Set minimum ONE question from each unit, max Eight from all.)

Answer any five of the following questions

 5x5=251. Evaluate the expression given (i) $\mathrm{x}=2, \mathrm{y}=3, \mathrm{a}=1 / 2, \mathrm{~b}=-2 / 3,(x / y)^{2}-3(b / a)^{3}$.

$$
\text { (ii) } \mathrm{x}=2, \mathrm{y}=-1, \mathrm{z}=3, \mathrm{a}=0, \mathrm{~b}=4, \mathrm{c}=1 / 3 \frac{4 x^{2} y(\mathrm{z}-1)}{a+b-3 c} \text {. }
$$

2. Find $\left(e^{y}+1\right)\left(e^{y}-1\right)\left(e^{2 y}+1\right)\left(e^{4 y}+1\right)\left(e^{8 y}+1\right)$.
3. Divide $x^{2}+2 x^{4}-3 x^{3}+x-2$ by $x^{2}-3 x+2$.
4. Add the algebraic expressions $2 a^{2} b c-2 a c b^{2}+5 c^{2} a b, 4 b^{2} a c+4 b c^{2}-7 a^{2} b$, $4 a b c^{2}-3 a^{2} b c-3 a b^{2} c, \quad b^{2} a c-a b c^{2}-3 a^{2} b c$.
5. (i) Find the L.C.M. of $9 x^{4} y^{2}$ and $12 x^{3} y^{3}$.
(ii) Find the G.C.F. of $48 r^{3} t^{4}$ and $54 r^{2} t^{6}$.
6. Find the complex fraction of $1-\frac{1}{2-\frac{1}{\left[3-\frac{2 a-1}{2 a+1}\right]}}$.
7. (i) Find the value of $(0.004)(30000)^{2}$.
(ii) Evaluate $4 x^{-2 / 3}+3 x^{1 / 3}+2 x^{0}$ when $x=8$.
8. Perform the indicated operations both algebraically and graphically $(2+6 i)+(5+3 i)$.

SECTION-B (Essay Questions)

(Instructions to the paper setter: Set minimum two questions from each unit, either or internal choice)

Answer All of the following questions

$5 \times 10=50$
9. a) Add the algebraic expressions
(i) $x^{2}+y^{2}-z^{2}+2 x y-2 y z, y^{2}+z^{2}-x^{2}+2 y z-2 z x, z^{2}+x^{2}-y^{2}+2 z x-2 x y$.
(ii) Perform the division of $2 x^{6}+5 x^{4}-x^{3}+1$ by $-x^{2}+x+1$.

Or
b) Find the product of $(3 y+x)\left(81 y^{4}-27 y^{3} x+9 y^{2} x 3 y x^{3}+x^{4}\right)$
10. a) (i) Find the factor of $\left(x^{2}-4 z^{2}+9 y^{2}-6 x y\right)$
(ii) Find the L.C.M. of $2^{3} .3^{2}(x-y)^{3}(x+2 y)^{2}, 2^{2} .3^{3}(x-y)^{2}(x+2 y)^{3}$, $3^{2}(x-y)^{2}(x+2 y)$

Or

b) Find the perfect square of $4 m^{6} n^{6}+32 m^{4} n^{4}+64 m^{2} n^{2}$.
11. a) Find the addition and subtraction of
$\frac{3 x-6}{4 x^{2}+12 x+16} \frac{2 x-5}{6 x^{2}-6}+\frac{3 x^{2}+3}{8 x^{2}+40 x+32}$

Or

b) (i) Find the value of $4 x^{-2 / 3}+3 x^{1 / 3}+2 x^{0}$ when $x=8$.
(ii) Find the value of $(0.125)^{1 / 3} \cdot 0.25^{-1 / 2}$.
12. a) (i) Find the multiplication of $(\sqrt{x+y}-z)(\sqrt{x+y}+z)$
(ii) Find $\frac{1}{5}(-10+\sqrt{-125})$

Or
b) Show that $\frac{x+\sqrt{y}}{x-\sqrt{y}}+\frac{x-\sqrt{y}}{x+\sqrt{y}}=\frac{2 x^{2}+2 y}{x^{2}-y}$
13. a) Find $\frac{2 \sqrt{3}+2 i}{3 \sqrt{2}-4 \sqrt{3} i}$

Or
b) Find $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)$

KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)
Department Of Mathematics

Programme	Semester:	Title of The Course		Course Code:	W.E.F	
 B.VOC(WT)	I	Discrete Mathematics - I			R20ITDM101 $\&$ R20WSDM101	2020-21
Total No of Hours for Teaching - Learning	Instructional Hours for Week		Duration of Semester End Examination in Hours	Max Marks	Credits	
60 Hours		Theory		3 Hours	CIA	SEE

QUESTION BANK

SHORT ANSWER QUESTIONS:

SECTION-A

1. Evaluate the expression given
(i) $\mathrm{x}=2, \mathrm{y}=3, \mathrm{a}=1 / 2, \mathrm{~b}=-2 / 3,(x / y)^{2}-3(b / a)^{3}$.
(ii) $\mathrm{x}=2, \mathrm{y}=-1, \mathrm{z}=3, \mathrm{a}=0, \mathrm{~b}=4, \mathrm{c}=1 / 3 \frac{4 x^{2} y(\mathrm{z}-1)}{a+b-3 c}$.
2. Find $\left(e^{y}+1\right)\left(e^{y}-1\right)\left(e^{2 y}+1\right)\left(e^{4 y}+1\right)\left(e^{8 y}+1\right)$.
3. Add the algebraic expression $x^{2}+y^{2}-z^{2}+2 x y-2 y z, y^{2}+z^{2}-x^{2}+2 y z-2 z x$,
$z^{2}+x^{2}-y^{2}+2 z x-2 x y$
4. Add $7 x+3 y^{3}-4 x y, 3 x-2 y^{3}+7 x y, 2 x y-5 x-6 y^{3}+7 x y^{3}$.
5. Add the algebraic expression $2 a^{2} b c-2 a c b^{2}+5 c^{2} a b, 4 b^{2} a c+4 b c a^{2}-7 a c^{2} b$, $4 a b c^{2}-3 a^{2} b c-3 a b^{2} c, b^{2} a c-a b c^{2}-3 a^{2} b c$

SECTION-B

6. (i) Find the L.C.M. of $9 x^{4} y^{2}$ and $12 x^{3} y^{3}$.
(ii) Find the G.C.F. of $48 r^{3} t^{4}$ and $54 r^{2} t^{6}$.
7.Find the value of $(u-v)^{3}(u+v)^{3}$
8.Simplify $\left(x^{2}-x+1\right)^{2}\left(x^{2}+x+1\right)^{2}$
9.Simplify $\left(2 t^{2}+s\right)\left(3 t^{2}+4 s\right)$
10.Find the value of $\left(a b^{2}+2 b\right)^{3}$
7. Find the factors of $6 x^{2}-7 x-5$
8. Find the factors of $3 x^{2}+10 x+3$

SECTION-C

13. Find the complex fraction of $1-\frac{1}{2-\frac{1}{\left[3-\frac{2 a-1}{2 a+1}\right]}}$.
14. (i) Find the value of $(0.004)(30000)^{2}$.
(ii) Evaluate $4 x^{-2 / 3}+3 x^{1 / 3}+2 x^{0}$ when $x=8$.
15.Simplify $\frac{x^{2}-3 x+2}{2-x}$
15. Show that $\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{\frac{1}{x-1}+\frac{1}{x+1}}=2$
16. Evaluate $\frac{-3^{2}(-2 x)^{-3}}{(x+1)^{-2}}$ when $\mathrm{x}=2$.
17. Evaluate $(0.004)(30.000)^{2}$.

SECTION-D

19. Find the value of $\frac{5}{\sqrt[2]{3}+\sqrt{2}}$.
20. Rationalise the denominator of $\frac{3}{\sqrt[3]{5}-2}$
21. Simplify $\frac{3}{\sqrt{5}+\sqrt{2}}$
22. Simplify $(3 \sqrt{2}-4 \sqrt{5})(2 \sqrt{3}+3 \sqrt{6})$
23.Find the value of $(\sqrt{x+y}-z)(\sqrt{x+y}+z)$
23. Find $\sqrt[12]{8 x^{3} y^{6}}$.

SECTION-E

25. Perform the indicated operations both algebraically and graphically ($2+6 \mathrm{i}$) $+(5+3 i)$.
26. Find $(5+3 i)(2-2 i)$
27.Find $\frac{1+i}{3-i}$
27. Find $\frac{-1}{2-2 i}$
29.Find $\frac{3-\sqrt{2 i}}{\sqrt{2 i}}$
30.Find the value of $\left(\frac{2}{3}-\frac{1}{2} i\right)-\left(\frac{-1}{3}+\frac{1}{2} i\right)$

LONG ANSWER QUESTIONS:

SECTION-A

1. Add the algebraic expressions
(i) $x^{2}+y^{2}-z^{2}+2 x y-2 y z, y^{2}+z^{2}-x^{2}+2 y z-2 z x, z^{2}+x^{2}-y^{2}+2 z x-2 x y$.
(ii) Perform the division of $2 x^{6}+5 x^{4}-x^{3}+1$ by $-x^{2}+x+1$.
2. Find the product of $(3 y+x)\left(81 y^{4}-27 y^{3} x+9 y^{2} x 3 y x^{3}+x^{4}\right)$
3.Divide $x^{2}+2 x^{4}-3 x^{3}+x-2$ by $x^{2}-3 x+2$
4.Solve $\frac{16 y^{4}-1}{2 y-1}$

SECTION-B

5. (i) Find the factor of $\left(x^{2}-4 z^{2}+9 y^{2}-6 x y\right)$
(ii) Find the L.C.M. of $2^{3} .3^{2}(x-y)^{3}(x+2 y)^{2}, 2^{2} .3^{3}(x-y)^{2}(x+2 y)^{3}$,

$$
3^{2}(x-y)^{2}(x+2 y)
$$

6 . Find the perfect square of $4 m^{6} n^{6}+32 m^{4} n^{4}+64 m^{2} n^{2}$
7.Find the GCF and LCM of $y^{4}-16, y^{2}-4, y^{2}-3 y+2$.
8. Find $(3 y+x)\left(81 y^{4}-27 y^{3} x+9 y^{2} x^{2}-3 y x^{3}+x^{4}\right.$

SECTION-C

9. Find the addition and subtraction of $\frac{3 x-6}{4 x^{2}+12 x+16} \frac{2 x-5}{6 x^{2}-6}+\frac{3 x^{2}+3}{8 x^{2}+40 x+32}$
10. (i) Find the value of $4 x^{-2 / 3}+3 x^{1 / 3}+2 x^{0}$ when $x=8$.
(ii) Find the value of $(0.125)^{1 / 3} \cdot 0.25^{-1 / 2}$.
11.Evaluate $3 \sqrt{\frac{(0.004)^{4}(0.0036)}{(120000)^{2}}}$
12.Find that of $\frac{(80,000,000)^{2}(0,000003)}{(6,00,000)(0.002)^{4}}$

SECTION-D

13. (i) Find the multiplication of $(\sqrt{x+y}-z)(\sqrt{x+y}+z)$
(ii) Find $\frac{1}{5}(-10+\sqrt{-125})$
14. Show that $\frac{x+\sqrt{y}}{x-\sqrt{y}}+\frac{x-\sqrt{y}}{x+\sqrt{y}}=\frac{2 x^{2}+2 y}{x^{2}-y}$
15. Simplify $\frac{x+\sqrt{x}}{1+\sqrt{x}+x}$
16. Find $\frac{2+\sqrt{3}+\sqrt{5}}{2+\sqrt{3}-\sqrt{5}}$

SECTION-E

17. Find $\frac{2 \sqrt{3}+2 i}{3 \sqrt{2}-4 \sqrt{3} i}$
18. Find $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)$
19.Simplify $\frac{5}{3-4 i}+\frac{10}{4+3 i}$
19. Simplify $\frac{3 \sqrt{2}+2 \sqrt{3 i}}{3 \sqrt{2}-2 \sqrt{3 i}}$

KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous) Department Of Mathematics

Programme	Semester:	Title of The Course			Course Code:		W.E.F
 B.VOC. (IT)	II	Discrete Mathematics - II			$\begin{aligned} & \hline \text { R20WS } \\ & \text { R20ITI } \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 201 \\ & \mathrm{I} 201 \\ & \hline \end{aligned}$	2019-20
Total No of Hours for Teaching-Learning		Instructional Hours for Week		Duration of Semester End Examination in Hours	Max Marks		Credits
60 Hours		Theory		3 Hours	CIA	SEE	
		4			25	75	4

COURSE OBJECTIVES

The aim of this course is to provide necessary information to solve problems on Algebra and their applications.

COURSE OUTCOME

- Understand the concept of Algebra .
- Finding Solutions in Special products, exponents, Fundamental operations ..
- Applications in classical mechanics.
UNIT - I

Functions and graphs

Functions of two variables-rectangular co-ordinate system-graph of two variablesgraphing the functions $\mathrm{y}=\mathrm{f}(\mathrm{x})$
Simultaneous linear equations-linear equation of two unknowns-system of two linear equations in two unknowns-solutions by addition,subtraction,solution by substitution-system of three linear equation in three unknowns
Mathematical induction -principles of mathematical induction

UNIT - II.

Sets-definition of a set -sub set -set operations-Venn diagrams-algebra of sets -duality of sets -finite sets - power sets
Functions -function-real valid functions- composition of function - one-one, onto , invertible -function recurresively defined function
UNIT - III:

Vectors and Matrices:
Introduction-vectors-matrices-matrix addition \&scalar multiplications-matrix multiplications-transpose-square matrices-invertible (non singular)matrices-inverses-determinants-elementary row operations -Gaussian elimination

UNIT - IV
Lattice -bounded lattices-distribute lattices-complements, complemented lattice
UNIT -V
Boolean algebra:
Introduction -basic definition-duality- duality principles-sum of products form of sets -sum -of-products form for boolean table ,Boolean functions logic gates-circuits-truth tablesBoolean functions

NOTE : Problems only on all the above concepts

PRESCRIBED BOOKS:

1.Murray R-spiegal,Robert E.maver ,Schaum's outline series -college algebraedition
Unit-I: chap:10,12,13,15,31 of above text book
2.SEYMOUR LIPSCHUTZ: marc lipson Schaum's outline series-discrete mathematics second edition
Unit-II: chap-1,2,3,4;
Unit-III: chap-14,15 content \&treatments as it is

Reference Books :

Bhavanari Satyanarayana \&kuncham syam Prasad
Discrete mathematics \&graph theory, printice hall of India ,learning ,New Delhi 2009.

Blue print:

Section A - One Question from each chapter of Unit - IV \& Unit - V

- Two Questions from Unit I, Unit II \& Unit III .

Section B - Two Questions from each Unit.

KAKARAPARTI BHAVANARAYANA COLLEGE (Autonomous)
Department of Mathematics

Programme	Semester:	Title of The Course			Course Code:	W.E.F
 B.VOC. (IT)	II	Discrete Mathematics - II			R20WSDM201 R20ITDM201	2019-20
Total No of Hours for Teaching - Learning		Instructional Hours for Week		Duration of Semester End Examination in Hours	Max Marks	Credits
60 Hours		Theory	Practical	3 Hours	CIA	SEE
	4	2		25	75	

MODEL QUESTION PAPER

SECTION -A

Answer any FIVE questions:

5x5=25M
1.If $y=5+3 x-2 x^{2} \quad$ find the values of y corresponding to $x=-3,-2,-1,0,1,2,3$.
2.solve the equations $3 x+y-z=4, x+y+4 z=3,9 x+5 y+10 z=8$.
3. Find the powerset $\mathrm{P}(\mathrm{A})$ of $\mathrm{A}=\{1,2,3,4\}$.
4.If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{R}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-2, \mathrm{~g}(\mathrm{x})=2 \mathrm{x}-3$ then find g of where $A=\{1,2,3,4,5\}$.
5.Find the ADJ of $\left[\begin{array}{lll}4 & 5 & 6 \\ 5 & 0 & 3 \\ 2 & 4 & 7\end{array}\right]$.
6.Define the Lattice .
7. Find the truth table for $\sim\left(p^{\wedge} \sim q\right)$.
8.If $u=(2,-3,1), v=(1,4,-2)$ be two vectors then compute $(U+V) x(U-V)$.

SECTION -B

ANSWER ALL THE QUESTIONS

9. A)Prove by mathematical induction that for all integers ' n '.

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots+\mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{OR}
\end{equation*}
$$

B). Prove by mathematical induction that for all integers ' n '.

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

10. A) If $\mathrm{f}: A \rightarrow B, \mathrm{~g}: B \rightarrow C$ are two bijections then prove that gof: $A \rightarrow C$ is also a bijection.

(OR)

B) Find the formula for the inverse of $h(x)=\frac{2 x-3}{5 x-7}$
11.A).Find the inverse of $\left[\begin{array}{ccc}1 & -2 & 2 \\ 3 & -3 & 6 \\ 1 & 1 & 7\end{array}\right]$ by using row operations.
(OR)
B). Show that $\begin{array}{lllllll}1 & a^{2} & a^{3} & & a^{2} & b c \\ 1 & b^{2} & b^{3} & = & b & b^{2} & c a \\ 1 & c^{2} & c^{3} & c & c^{2} & a b\end{array}=(a-b)(b-c)(c-a)(a b+b c+c a)$
12.A). Let ' L ' be a bounded distributive lattice. Then the compliments are unique if there exists .
(OR)
B). If ' L ' be a lattice then $a^{\wedge} b=a \Leftrightarrow a V b=b$.
13. A).i) Define Boolean algebra.
ii) Describe the three basic logic gates.
(OR)
B).Show that $(p \rightarrow q)^{\wedge}(q \rightarrow r) \rightarrow(p \rightarrow r)$ is tautology.
\qquad

